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In various applications, the magnetic hysteresis modeling must ensure that both the magnitude and direction of the 

magnetization are quantified correctly. To this end, extensive studies have been made in the context of Preisach modeling. Inspired by 

the recently proposed Preisach-Stoner-Wohlfarth model, a magnetic hysteron, is proposed in a more generalized energy framework, 

whose behavior is in agreement with the required thermodynamic properties. Using the information conducted by this hysteron, an 

engineering based simplification of the characteristics of the hysteron and a systematic treatment of its distribution on a quasi-Preisach 

diagram can be established. In this paper, an efficient and self-consistent vector hysteresis model is proposed. The proposed model 

simulates the macroscopic ferromagnetic properties in the real media and is validated experimentally.  

 
Index Terms—Critical surface, micromagnetics, Preisach modeling, vector hysteresis.  

 

I. INTRODUCTION 

HE MAGNETIZATION behavior of ferromagnetic materials is 

known to be of vectorial characteristics. However, the 

classical Preisach model can only be applicable to hysteresis 

subjected to an alternative external magnetic field. This 

drawback can be addressed by various modifications.  

    Straightforward generalization of the classical Preisach 

modeling proved to be either incomplete or full of artificial 

assumptions, which results in unphysical characteristics and 

inefficient parameter identifications. Recently, a novel 

hysteresis modeling is constructed. Depending on the critical 

surfaces of the proposed hysteron, the amplitude variation of 

magnetization is determined [1]. To address the angular 

variation of magnetization, the famous Stoner-Wohlfarth (SW) 

model is employed [2]. The combination of these two 

elements creates an axis independent model, requiring no 

assumptions on the rotational behavior of the magnetization 

dynamics. In addition, the complicated computation associated 

with the SW model can be evaluated once-for-all. However, 

the introduction of the critical surface and the employment of 

SW model are inherently inconsistent. In addition, it is not 

easy to find the identification parameters used in the critical 

surface and SW model. In this paper, all these problems are 

circumvented by the deduction of the hysteron based on the 

theory of phase transition. 

II. MICROMAGNETICS BASED HYSTERON 

A. Energy of Ferromagnetic Material 

The ferromagnetic system being considered is an array of 

fixed sites forming a periodic lattice. A given set of spins {Si} 

specifies a configuration of the whole system. The energy in 

this configuration takes the form of  
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The first term is referred as the exchange energy, by which the 

electrons spinning in the magnetic materials are lined up in 

parallel. J denotes the strength of interaction among 

neighbouring spins. The second terms represents the Zeeman 

energy due to the external magnetic intensity H.  

B. Formulation of Hysteron 

 Because the evolution of the rate-independent hysteresis can 

be regarded as a sequence of states of equilibrium, the 

magnetization can be determined by the equilibrium state of 

the energy represented by (1). Assuming that there are 

sufficient degenerative energy levels in the ferromagnetic 

materials so that the spins {Si} are classical vectors,  the 

magnetic dipole moment M in that system for a particular spin 

configuration is given by 
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To apply statistical mechanics to such subsystem, the partition 

function Z must be firstly determined in order to evaluate 

other macroscopic thermodynamic quantities. For classical 

spins, the canonical distribution is readily applied. However, 

the partition function of the system involves integration, rather 

than summation, over these variables. In two-dimensional spin 

vector space, equal probabilities with equal solid angle dΩ 

change the partition function into 
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To facilitate the above integration, mean-field approach is 

utilized, i.e., assume the exchange energy can be approximated 

as 
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i.e., the sum over pairs can be split into a sum over all the 

spins and the nearest neighbours of spin i, <j>i. The latter is 

further approximated to be proportional to the normalized 

magnetization m with respect to the saturated magnetization 

Ms. The total energy of the system can thus be rewritten as 
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Inserting (5), the integration of (3) gives 
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where I0 is the zeroth order modified Bessel function of the 

first kind. β = 1/kBT, and kB is the Boltzmann constant. The 

evaluation of average m is known to be (<∙> denotes 

expectation) 

 )()(
)ln(1

0001
0

effeff
eff

HIHI
Z




n
H

m 





  

  (7) 

where N is the number of spins in the lattice and n represents 

the unit direction vector of Heff. For scalar cases, the procedure 

of (3) to (7) can be used to obtain the result, M = tanh(μ0βHeff), 

which is identical to those obtained using Ising's model. It is 

noted that the individual atomic magnetic moments within a 

domain are aligned in the same direction. Their summation 

offers a kind of super-magneton, which is equivalent to a 

significant increase of β in (6). 

III. MODEL IMPLEMENTATION 

Given the Preisach distribution of hysterons, μ(Ω), the 

assembly of the hysterons γ(Ω) described in Section of II.B 

gives the magnetization M induced by the applied field H  
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where Ω denotes the parameter set to depict the magnetic state 

of a hysteron completely. According to (7), two significant 

properties can be drawn: 

 i) The operator γ(Ω) provides a sigmoid-shaped hysteresis 

loop on a certain direction. For the two dimensional vector 

hysteresis, every direction should have the same probability to 

induce the magnetization since the magnetization in (7) 

depends on the radial vector. The envelope of these hysterons 

forms a circular ring critical surface in the H space. the radius 

and half-width of each critical ring, i.e., Hi and Hc, denote the 

components comprise Heff other than H and pinning field, 

respectively. The relationship between H, Hi and the direction 

vector of magnetization, m, is illustrated in Fig. 1. 

 

 
Fig. 1.  critical ring of the hysterons in H space 

 ii) Using Hi and Hc described in above subsection, it is 

possible to construct a quasi-Preisach diagram in each 

direction, as shown in Fig. 2, which indicates its compatibility 

with the classical scalar Preisach modeling. If the external 

field H rotates, taking Fig. 2 for instance, the magnetization 

signified within the triangle within pattern 1 will follow H 

instantaneously. The other parts, both the rectangular created 

by the previous reversal field H1 and the initial magnetization 

state without pattern are frozen in the former direction. 

 
Fig. 2.  quasi-Preisach diagram 

A. Stack of Magnetization History 

 A stack is used to efficiently find the previous change of 

external field, including both magnitude and direction. 

Different from the stack employed in traditional Preisach 

modeling, this stack consists of three different reversals, the 

local minimum field point, the local maximum field point, and 

the rotated field point.  

B. Preisach Distribution 

In the proposed model, the Preisach distribution function is 

defined as the number of hysterons associated with each 

critical ring. Given maximum Hi and Hc, it can be discretized 

into a group of concentric rings with a resolution d. Assume 

the density pj in the jth ring is uniform, the input sequence, 

[Hk]k=1,..,m, is then corresponding to [Mk]k=1,..,m. By writing this 

mapping in the form of matrix, i.e., 
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where k = 1,...m, j = 1,...,n, it is clear that the density function 

[pj] can be easily identified by means of least square method 

or optimization routines. 

IV. NUMERICAL RESULTS 

 
Fig. 3.  Rotational loss varying with the magnitude of the rotating flux density 

By using the major loop illustrated in [3], the same 

rotational hysteresis loss is predicted. 
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